Differential geometry and multigrid for the div-grad, curl-curl and grad-div equations

نویسندگان

  • Tim Boonen
  • Geoffrey Deliége
  • Stefan Vandewalle
  • Geoffrey Deliège
چکیده

This paper is concerned with the application of principles of differential geometry in multigrid for the div-grad, curl-curl and grad-div equations. First, the discrete counterpart of the formulas for edge, face and volume elements are used to derive a sequence of a commuting edge, face and volume prolongator from an arbitrary partition of unity nodal prolongator. The implied coarse topology and the normalization of the prolongators are analyzed, and it is proved that they form a discrete de Rham sequence if they are normalized. Numerical results are presented for the resulting edge pro-longator. It is shown that this edge prolongator is a generalization of the Reitzinger-Schöberl prolongator. Next, the partition of unity and commutation properties are used to prove that all matrices in a multigrid hierarchy for the considered equations can be factorized as a matrix product separating the metric and topological information. Finally, those properties are identified as requirements for the multigrid restriction to reflect the typical topological characteristics of the div-grad and curl-curl equations. Differential geometry and multigrid for the div-grad, curl-curl and grad-div equations

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Multilevel Methods for H(grad), H(curl), and H(div) Systems on Graded and Unstructured Grids

We give an overview of multilevel methods, such as V-cycle multigrid and BPX preconditioner, for solving various partial differential equations (including H(grad), H(curl) and H(div) systems) on quasi-uniform meshes and extend them to graded meshes and completely unstructured grids. We first discuss the classical multigrid theory on the basis of the method of subspace correction of Xu and a key...

متن کامل

An algebraic multigrid method for high order time-discretization of the div-grad and the curl-curl equations

We present an algebraic multigrid algorithm for fully coupled implicit Runge-Kutta and Boundary Value Method time discretizations of the div-grad and curl-curl equations. The algorithm uses a blocksmoother and a multigrid hierarchy derived from the hierarchy built by any algebraic multigrid algorithm for the stationary version of the problem. By a theoretical analysis and numerical experiments,...

متن کامل

Algebraic Multigrid for High-Order Hierarchical H(curl) Finite Elements

Classic multigrid methods are often not directly applicable to nonelliptic problems such as curl-type partial differential equations (PDEs). Curl-curl PDEs require specialized smoothers that are compatible with the gradient-like (near) null space. Moreover, recent developments have focused on replicating the grad-curl-div de Rham complex in a multilevel hierarchy through smoothed aggregation ba...

متن کامل

Finite Element Methods for Maxwell Equations

1. SOBOLEV SPACES AND WEAK FORMULATIONS Let Ω be a bounded Lipschitz domain in R. We introduce the Sobolev spaces H(curl ; Ω) = {v ∈ L(Ω), curlv ∈ L(Ω)}, H(div; Ω) = {v ∈ L(Ω),div v ∈ L(Ω)} The vector fields (E,H) belong to H(curl ; Ω) while the flux (D,B) in H(div; Ω). We shall use the unified notation H(d; Ω) with d = grad , curl , or div. Note that H(grad ; Ω) is the familiar H(Ω) space. The...

متن کامل

A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes

Abstract. We define discrete differential operators such as grad, div and curl, on general two-dimensional non-orthogonal meshes. These discrete operators verify discrete analogues of usual continuous theorems: discrete Green formulae, discrete Hodge decomposition of vector fields, vector curls have a vanishing divergence and gradients have a vanishing curl. We apply these ideas to discretize d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005